If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-2x-325=0
a = 5; b = -2; c = -325;
Δ = b2-4ac
Δ = -22-4·5·(-325)
Δ = 6504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6504}=\sqrt{4*1626}=\sqrt{4}*\sqrt{1626}=2\sqrt{1626}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{1626}}{2*5}=\frac{2-2\sqrt{1626}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{1626}}{2*5}=\frac{2+2\sqrt{1626}}{10} $
| 6(12+x)=-42 | | x+(x+4)=120 | | 16y-1y=4 | | 2a÷3=4 | | X^2-50x-840=0 | | 15x-6=60-33 | | 2x+9=38 | | X2-2=2x+13 | | 6x+5=3x+14= | | A4-7a2=-11 | | (x-1)(+1)=0 | | 2x*(3x+1)=5x+7 | | 240=x+0.25x | | 2x*x=210 | | 10x+10=130 | | 10y+6=56 | | 6z+19=61 | | 7x(5x+12)=108 | | 62=6x6 | | 15=3x3 | | 15=3x3= | | 13z-(7+7z)+(3z+9)=30,8 | | 14x+29=11x+38 | | 8x+57=97 | | x-(3x/5)=200 | | 10x-58=11x-72 | | 8x+33+11x-43=180 | | 8x-61=9x-77 | | 2(9x-3)=48 | | 3(2x-11-14)+-11=15-(-9x-11-5) | | 3(2x11-14)+x=15-(-9x-11-5) | | X2+14x=45 |